报告人:王焰金教授
报告题目:Nonlinear stability of the inviscid magnetic Bénard problem
报告摘要:
(1) We consider the magnetic Bénard problem for a horizontal layer of inviscid, thermally and electrically conducting fluid, and prove that the thermal convection is inhibited by a strong enough uniform vertical magnetic field. The key ingredient here is to use a new representation of the vertical component of the velocity, derived from the magnetic equation due to the transversality of the magnetic field, to control the thermal instability.
(2) This works also for the classical viscous magnetic Bénard problem, which in particular improves the result of Galdi (ARMA 1985) in the large Chandrasekhar number limit and justifies, in the nonlinear sense, the theory in Chandrasekhar's classical book (1961) that the temperature gradient for the onset of convection is independent of the viscosity in this limit. This is a joint work with Fei Jiang (Fuzhou University).
报告时间:2022年10月29日上午11:00-14:00
报告形式:腾讯会议;会议号:616-828-477
获取会议密码请发邮件至:sjfmath @hit.edu.cn
报告人简介:王焰金,博士,厦门大学数学科学学院教授、博士生导师。2005年本科和2011年博士毕业于厦门大学,2009.9-2010.12美国布朗大学联合培养博士,2013.9-2014.9香港中文大学博士后。主要从事流体力学方程的数学理论研究,论文接受发表在CPAM、CMP、ARMA、Adv. Math.、CPDE、JMPA等。曾获2013年度全国优秀博士学位论文奖,入选2018年度国家高层次青年人才。