报告人:陕西师范大学舒洪英教授
报告题目:Complex dynamics of a stage-structured model with diapause in tick growth
摘要:We consider a delay differential equation for tick population with diapause, derived from an age-structured population model, with two time lags due to normal and diapause mediated development. We derive threshold conditions for the global asymptotic stability of biologically important equilibria, and give a general geometric criterion for the appearance of Hopf bifurcations in the delay differential system with delay-dependent parameters. By choosing the normal development time delay as a bifurcation parameter, we analyze the stability switches of the positive equilibrium, and examine the onset and termination of Hopf bifurcations of periodic solutions from the positive equilibrium. Under some technical conditions, we show that global Hopf branches are bounded and connected by a pair of Hopf bifurcation values. This allows us to show that diapause can lead to the occurrence of multiple stability switches, coexistence of two stable limit cycles, among other rich dynamical behaviours
报告时间:10月20日上午10:30-12:30;
报告形式:腾讯会议;会议号:785 496 844
获取会议密码请发邮件至:ysu@hit.edu.cn
报告人简介:舒洪英,2010年获002全讯白菜网博士学位。2008年至2010年在加拿大阿尔伯塔大学留学两年,2011年至2013年在加拿大新不伦瑞克大学任AARMS博士后研究员,2013年至2014年在加拿大瑞尔森大学和约克大学任博士后研究员。2014年至2018年任职同济大学特聘研究员,博士生导师。2018年至今任陕西师范大学特聘教授,博士生导师。2016年获上海市浦江人才计划,2017年获陕西省百人计划特聘教授。曾主持一项加拿大大西洋数学研究协会科研基金、一项上海市自然科学基金项目,一项国家自然科学基金青年项目, 现主持一项国家自然科学基金面上项目。主要研究微分动力系统及生物数学方面的应用。已发表SCI收录论文37篇,分别发表在J. Math. Pures Appl., Journal of Differential Equations, SIAM Journal of Applied Mathematics, Nonlinearity, Journal of Dynamics and Differential Equations, Journal of Mathematical Biology,Journal of Theoretical Biology, Bulletin of Mathematical Biology等SCI期刊上。任美国数学学会MR评论员、欧洲数学学会zbMATH评论员。