报告人:哈尔滨师范大学王金凤教授
报告题目:Persistence and extinction in reaction diffusion population models with strong Allee effect
报告摘要:Protecting endangered species has been an important issue in ecology.We derive a reaction-diffusion model for a population in a one-dimensional bounded habitat,where the population is subjected to a strong Allee effect in its natural domain but obeys a logistic growth in a protection zone.We establish the conditions for population persistence and extinction via the principal eigenvalue of an associated eigenvalue problem and investigate the dependence of this principal eigenvalue on the location (i.e., the starting point and the length) of the protection zone. The results are used to design the optimal protection zone under different boundary conditions, that is,to suggest the starting point and length of the protection zone with respect to the population growth rate in the protection zone, in order for the population to persist in a long term.
报告时间:10月15日下午15:40-17:40;
报告形式:腾讯会议;会议号:115 197 646
获取会议密码请联系:ysu@hit.edu.cn
报告人简介:王金凤,哈尔滨师范大学数学科学学院教授,博士生导师。黑龙江省高校青年学术骨干,黑龙江省数学会常务理事。一直致力于微分方程、动力系统方向的研究,在JDE,JDDE,JMB,ZAMP,DCDS-B等期刊发表相关SCI检索文章20余篇,主持完成国家自然科学基金项目2项,省自然科学基金项目3项。