学术报告
学术报告
当前位置:首页  学术报告
双曲曲面谱理论研讨会
发布人:蔡易  发布时间:2021-05-12   浏览次数:642

作为西湖大学谱理论研讨会序列的一部分,我们将于2021520-522日在002全讯白菜网举办第二次双曲曲面谱理论研讨会。会议具体信息如下,欢迎感兴趣的师生参加。

会议时间安排如下:

519日,会议报到;

520-22日,研讨会时间;

523日,离会。

会议地点:002全讯白菜网明德楼B201-1学术报告厅

会议日程如下:

520日:回顾第一次研讨会内容、自由讨论;

521日:

l  9:00-12:00Yigeng Zhao (Westlake U.), “Eisenstein Series E(z,s)”

Abstract: We introduce the full level Eisenstein series, prove its meromorphic continuation and functional equation. Then we compute its Fourier expansion.

l  2:00-5:00, Bing Xie (Shandong U., Weihai), “Incomplete Eisenstein Series”

Abstract: By introducing incomplete Eisenstein series, we construct the space of incomplete Eisenstein series inside the L^2 space and then decompose the latter into an orthogonal sum of the Eisenstein part and the cuspidal part.

l  6:30-9:30, Yongqiang Zhao (Westlake U.), “Regularity of E(z,s) on the Central Line”

Abstract: We prove that E(z,s) is regular on the central line Re(s)=1/2, from which we derive a regularity result of the Riemann zeta function and hence the Prime Number Theorem.

       522日:

l  9:00-12:00Dongwen Liu (Zhejiang U.), “Spectral Theorem for the Modular Surface”

Abstract: We first explain the Eisenstein transform and then prove the desired spectral theorem for the modular surface.

l  2:30-5:30, Tuoping Du (Southeast U.), “Existence of Cusp Forms”

Abstract: Via the automorphic wave equation, we can define a linear operator on the subspace of compactly supported smooth functions, then together with Hecke operators, we prove that the space of cusp forms is infinite dimensional.


联系人:张毅超yichao.zhang@hit.edu.cn