1.报告人:陈海波教授,中南大学
题目:Existence and Multiplicity of Normalized Solutions for Chern-Simons-Schrödinger Equations
摘要:In this talk, we consider the existence and multiplicity results of solutions with prescribed L2-norm for a class of nonlinear Chern–Simons–Schrödinger equations in R2. Under some mild assumptions, we establish the existence of infinitely many solutions. We also present a convergence property on the solutions. These results improve and generalize the existing ones in the literature.
报告人简介:陈海波, 中南大学二级教授、博士生导师。研究领域为常微分方程定性理论、偏微分方程理论及应用。在国际专业学术刊物上发表SCI论文100多篇,主持完成多项国家和湖南省自然科学基金面上项目及教育部留学回国人员科研项目,先后获宝钢优秀教师奖与湖南省自然科学奖。
2.报告人:戴斌祥教授,中南大学
题目:具时滞影响的Lotka-Volterra竞争-扩散-对流模型
摘要:In this talk, we consider the two-species Lotka-Volterra competition-diffusion-advection model with time delay effect. By utilizing the implicit function theorem, we obtain the existence of at least one spatially nonhomogeneous positive steady state under some conditions on parameters. By analyzing the corresponding characteristic equation, we show the local stability of this spatially nonhomogeneous positive steady state and the occurrence of Hopf bifurcation from it. When there is no time delay, we also study the global stability of the positive steady state. Based on the idea of Chen et al (2018 J. Differ. Equ. 264 5333–5359), the stability and direction of Hopf bifurcation are derived by introducing a weighted inner product associated with the advection rate. Finally, numerical simulations are carried out to verify the theoretical analysis results.
个人简介:戴斌祥,中南大学数学与统计学院二级教授、博士生导师;湖南省数学学会常务理事、副秘书长;中国生物数学学会常务理事;主要从事时滞微分方程与离散动力系统、种群生态学与传染病学、反应扩散方程的定性理论与应用等领域的研究,先后在国内外权威刊物上发表学术论文150多篇,主持5项国家自然科学基金面上项目和多项省部级重点课题,获得湖南省科技进步一等奖和湖南省自然科学一等奖各1项,2020年获得宝钢教育基金优秀教师奖。
时间:2021年4月27日18:00-22:00
地点:腾讯会议,会议ID:339 470 192
https://meeting.tencent.com/s/wIrYL8NIejPg