学术报告
学术报告
当前位置:首页  学术报告
002全讯白菜网百年校庆002资讯网系列学术报告之九十九 中国科学院数学与系统科学研究院郑伟英研究员报告通知
发布人:蔡易  发布时间:2020-07-01   浏览次数:1162

应002资讯网张达治、郭志昌老师邀请,中国科学院数学与系统科学研究院郑伟英研究员作学术报告,欢迎感兴趣的师生参加!

报告题目Interface-penalty finite elements for interface problems in H1, H(curl), and H(div)

报告时间2020715日,下午1400

报告平台腾讯会议

点击链接直接加入会https://meeting.tencent.com/s/JrAtRLt0GHSr

会议779 732 166

报告摘要Interface-penalty finite element methods are proposed to solve interface problems in H1, H(curl), H(div) spaces on unfitted tetrahedral meshes. The transmission conditions across the interface are derived in a unified framework for three types of interface problems. Usually, the well-posedness of an H1-elliptic problem requires two transmission conditions for both the solution and the normal flux. However, the well-posedness for H(curl)- or H(div)-elliptic problem requires three transmission conditions. This provides the guideline for designing stable high-order finite element methods on unfitted meshes. Optimal error estimates are proven in energy norms for interface-penalty finite element methods within a unified framework for H1, H(curl), and H(div). All error estimates are independent of the location of the interface relative to the mesh. Numerical examples show optimal convergence of the proposed finite element methods for piecewise smooth solutions.

【报告人简介】:郑伟英,中国科学院数学与系统科学研究院研究员,主要从事有限元方法的理论与应用研究,应用领域包括电磁和流体计算等。2017年获国家杰出青年科学基金资助,2019年任中科院数学与系统科学研究院冯康首席研究员