应002资讯网邀请,美国加州大学尔湾分校数学系Patrick Guidotti教授于近日来访公司并就偏微分方程稳定性及数值方法做系列报告,以下是报告信息,欢迎感兴趣的师生参加。
报告时间:2019年7月29日(星期一)下午14:00开始
地点:格物楼503
报告题目:A Novel Kernel Based Fictitious Domain Method
摘要:A novel numerical method is discussed which unifies so-called fictitious domain methods with so-called mesh-free methods and allows some analysis since it fits into the framework of kernel-based methods. It will be demonstrated that it delivers a numerical method that is very easily implemented, applies to a wide range of problems (on complex domains, with general boundary conditions and non-constant coefficients) , and allows for tunable high order of accuracy.
报告时间:2019年7月30日(星期二)上午9:00开始
地点:格物楼503
报告题目:Solutions and Stability Questions for a Parabolic Oscillator
摘要:A simple model is presented which exhibits interesting non-trivial dynamic behavior. It will be shown to possess periodic solutions in spite of being purely diffusive in nature. Stability of the trivial solution up to the Hopf bifurcation point yielding the periodic solution will be discussed.
报告时间:2019年7月30日(星期二)上午10:30开始
地点:格物楼503
报告题目:A Simple Diffusive Mechanism Can Explain Oscillations
摘要:In this talk I shall first present a thermostat model. Interestingly, the model shows that a simple diffusive mechanism can explain oscillations and may help explain periodic behavior in other fields such as biology.
报告人简介:Patrick Guidotti教授为加州大学尔湾分校(University of California, Irvine)数学系教授,研究生院副主席。Patrick Guidotti教授1992年毕业于瑞士苏黎世大学数学系,1996年获得瑞士苏黎世大学大学博士学位,曾于美国加州理工学院冯卡门讲师。Patrick Guidotti教授是国际著名偏微分方程研究专家,主要从事偏微分方程及其应用、偏微分方程数值方法等方向的科研工作。特别是在偏微分方程理论以及数值解有很深的造诣,经常在重要国际学术会议上作相关报告。在《SIAM J. on Math》, 《SIAM Journal on Imaging Science》等国际一流专业学术期刊上发表论文50余篇。