学术报告
学术报告
当前位置:首页  学术报告
002全讯白菜网百年校庆002资讯网系列学术报告之十二 香港浸会大学刘宏宇教授报告通知
发布人:蔡易  发布时间:2019-06-11   浏览次数:1033

由国际合作处国际化基金资助,应002资讯网宋明辉教授的邀请,香港浸会大学数学系副主任刘宏宇教授将于2019623—2019627日来访公司,并做6场学术讲座。刘宏宇教授的报告内容涉及反散射和隐形技术、等离子体材料、超分辨率成像和体态识别等计算数学和应用数学的前沿领域。以下是报告信息,欢迎感兴趣的师生参加。

  

报告1Mathematical theory of MAD technology

时间2019624日(周一)下午14:00-15:30

地点:格物楼503报告厅

摘要The Magnetic Anomaly Detection (MAD) technology has been used in various applications including the submarine detection, geophysical exploration and earthquake precursor detection. In this talk, I will describe a mathematical theory for this advanced technology.

  

报告2Plasmon resonances in optics and elasticity I: the quasi-static case

时间2019624日(周一)下午15:30-17:00

地点:格物楼503报告厅

摘要Plasmon materials are a type of metamaterials that allow the presence of negative material parameters. They can induce various resonance phenomena. In this talk, we shall discuss our mathematical study on the plasmon resonances and their applications in invisibility cloaking and super-resolution in wave imaging.

  

报告3Plasmon resonances in optics and elasticity II: beyond the quasi-static limit

时间2019624日(周一)下午17:00-18:30

地点:格物楼503报告厅

摘要This is a continuation of the last talk. I shall talk about several mathematical strategies on constructing metamaterial structures that can induce various plasmon/ polariton resonances beyond the quasi-static limits.

  

报告4Vanishing and localizing of transmission eigenfunctions and applications

时间2019625日(周二)下午14:00-15:30

地点:格物楼503报告厅

摘要The interior transmission eigenvalue problem is a type of non-elliptic and non-self-adjoint PDE eigenvalue problem in scattering theory. I shall discuss some recent discoveries on some intrinsic structures of the transmission eigenfunctions as well as their applications in invisibility cloaking and inverse problems. 

  

报告5Geometric structures of Laplacian eigenfunctions I: theoretical analysis

时间2019625日(周二)下午15:30-17:00

地点:格物楼503报告厅

摘要The Laplacian eigenvalue problem is arguably the simplest PDE eigenvalue problem. Nevertheless, the corresponding studies are fundamental to many branches of mathematics. In this talk, I shall present some novel and intriguing geometric structures of the Laplacian eigenfunctions and then discuss their applications in inverse scattering problems.

报告6Geometric structures of Laplacian eigenfunctions II: applications

时间2019625日(周二)下午17:00-18:30

地点:格物楼503报告厅

摘要This is a continuation of the last talk. We consider the applications of the spectral results for the inverse scattering problems. These include the inverse obstacleproblem and the inverse diffraction grating problem, which are concerned with imaging the shape of an unknown/inaccessible object from the associated wave probing data in different physical settings. This type of problem arises in a variety of important applications including radar/sonar, medical imaging, geophysical exploration and nondestructive testing.

  

报告人简介:刘宏宇教授毕业于香港中文大学数学系,现为香港浸会大学数学系副主任。他的代表性研究方向包括电磁散射中的反问题、隐形涂层、弹性材料中等离振子激发等。他已发表高水平SCI论文90余篇;出版专著2部,主持美国、香港基金项目11项;被国内外学术会议邀请作报告90余场。201612月,刘宏宇教授获国际学术期刊《纯数学与应用数学》颁发最高论文引用奖;20166月,荣获“2016Media V青年科学家奖20175月,第九届应用反问题国际会议,荣获国际反问题协会颁发的 “Calderon” 奖;20196月,荣获香港数学会颁发的“2019青年学者”奖。