受国际合作处资助,应数学系吴勃英教授和数学系与数学研究院孟雄副教授邀请,美国密西根理工大学徐正富副教授将于近日来公司进行讲学活动,欢迎感兴趣的师生参加! 报告题目1:Maximum principle preserving flux limiters for high order conservative methods 报告时间1:2017年7月18日上午10:30—12:00 报告地点1:格物楼503 报告摘要:In this talk, we will discuss a family of flux limiting high order methods for scalar hyperbolic conservation laws. The maximum principle preserving flux limiting method is generalized from the Flux-Corrected Transport method to high resolution schemes. Basic algorithm and accuracy results will be introduced. Extension and application to convection-diffusion problems and positivity-preserving flux limiting method for Euler equations will be discussed too. 报告题目2:High order total variation bounded finite difference method for one-dimensional conservation laws 报告时间2:2017年7月19日上午10:00—11:00 报告地点2:格物楼522 报告摘要:Provable total variation bounded high order (at least third order) method based on variation measured on grid values will be discussed in this talk. Most of the conventional design of TVB methods is based on Harten's criteria. However, to strictly follow Harten's TVD criteria, one can only provide methods of at most second order. Popular ENO/WENO methods are very successful in producing robust numerical results with great performance of suppressing oscillations around discontinuities. However, it is still elusive to prove ENO/WENO methods are TVB. As one of the most important properties we desire for numerical methods solving conservation laws, provable TVB property is at the center of this talk. A new criteria will be provided to design TVB high order finite difference scheme for one-dimensional problems. 报告人简介: 徐正富副教授分别在1997年和2000年于北京大学数学系获得学士和硕士学位,2005年于布朗大学应用数学系获得博士学位,现为美国密西根理工大学副教授。徐正富副教授长期从事于偏微分方程高阶精度数值方法研究,在高阶有限差分方法及加权本质无振荡方法、双曲守恒律方程数值解、满足最大值原理及保正方法、可压缩流体力学方程组的计算及多相流模拟等领域取得一系列重要成果。徐正富副教授主持美国国家自然科学基金3项,发表包含SIAM Journal on Numerical Analysis、SIAM Journal on Scientific Computing、Mathematics of Computation、Journal of Computational Physics在内的高水平论文30余篇。 |