应数学系邀请,美国威廉玛丽学院史峻平教授将于7月19-26日访问数学系与数学系师生交流并作系列报告。下面是报告的具体信息,欢迎感兴趣的师生参加。 报告时间:2016/07/22 15:00-16:00; 报告地点:格物楼503 报告题目:数据科学,计算数学和生物数学的旗下产业和研究 摘要:电子计算机技术的发展使得大规模计算,数据采集生成在近年内飞速发展。超大量数据的储存,传输和分析都是科学工作者面临的新的挑战。我将介绍数据科学这门新兴交叉学科的发展,和数学在其中起到的关键作用。我也将介绍美国本科教学中如何增加数据科学,生物数学的内容,和本科生数据科学,计算数学和生物数学方向的研究。
报告时间:2016/07/22 16:10-17:10; 报告地点:格物楼503 报告题目:Global Extinction of Population with Allee effect in Advective Environment 摘要: We show that in a spatial population model with strong Allee effect, the population becomes extinct no matter how large the initial population is, if the advection is strong enough. Hence the extinction equilibrium is globally asymptotically stable, which is quite different from the case of small or no advection that the dynamics is bistable. We will show results in both ODE patch model and reaction-diffusion-advection model.
报告时间:2016/07/25 15:00-16:00; 报告地点:格物楼503 报告题目:Modeling Chesapeake Bay oyster population 摘要: Native oyster populations in Chesapeake Bay have been the focus of three decades of restoration attempts, which have generally failed to rebuild the populations and oyster reef structure. Recent restoration successes and fi eld experiments indicate that the vertical relief of reefs is critical to reef persistence. I will describe an interdisciplinary research effort on oyster population and related problems. More specically, I will talk about (i) ordinary di fferential equation models of live oysters, dead oyster shells, and sediment, (ii) ordinary differential equation model of multiple reefs displaying bistability, and (iii) partial di fferential equation models of oyster or mussel shoreline pattern formation. 报告时间:2016/07/25 16:10-17:10; 报告地点:格物楼503 报告题目:Hopf Bifurcation in Reaction-Diffusion Population Model with Spatial-Temporal Nonlocal Delayed Growth Rate 摘要: We consider the existence of spatially inhomogeneous time-periodic orbit in a reaction-diffusion population model with spatial-temporal nonlocal delayed growth rate and Dirichlet boundary condition. When the dispersal kernel is of strong or weak type, the scalar reaction-diffusion equation with distributed delay is converted into a system of two or three reaction-diffusion equations without delay. We prove the existence of periodic orbits for the system which are equivalent to periodic orbits for the original scalar model.
报告人简介:史峻平,美国威廉玛丽学院(College of William and Mary)教授。1990-93年南开大学学习,1998年毕业于美国杨百翰大学,获博士学位。主要研究方向为偏微分方程,动力系统,分歧理论,非线性泛函分析,生物数学。现主持美国国家科学基金会基金项目1项,参加美国国家科学基金会基金项目1项,主持完成美国国家科学基金会项目3项。参加中国国家自然科学基金项目3项。获得黑龙江省科技奖2项。主持组织国际学术会议10多次,在国际学术会议做大会报告/邀请报告100余次。担任两个国际知名SCI刊物编委,为60多种数学、物理、生物刊物审稿人。发表学术论文100余篇,其中被SCI收录80余篇,被SCI杂志引用1000余次。在偏微分方程,分歧理论方面的研究工作受到国际上广泛重视。另外在生物数学,包括种群模型,生物化学反应,形态生成,生态系统稳定性等方面都有研究。 |